Project

General

Profile

Modul Deformation » History » Version 4

Andreas Hauffe, 07/05/2014 02:56 PM

1 1 Andreas Hauffe
h1. Modul Deformation
2
3 3 Andreas Hauffe
Das Modul Deformation dient zur Berechnung der Verformungen und der daraus resultierenden Spannungen ebener Platten infolge Belastung senkrecht zur Plattenebene. Die Berechnungen liefern dabei, wie beim Stabilitätsmodul aufgrund der verwendeten Ansätze, lediglich für symmetrische Laminate korrekte Ergebnisse. Das mechanische Verhalten der Platte unter Nutzung derselben Ansatzfunktionen wie bei der Betrachtung des Stabilitätsverhaltens abgebildet. Es ist möglich die Platte mit Versteifungselementen zu versehen. Als wirkende Last kann in der aktuellen Version eine konstante Flächenlast auf das Gesamtgebiet der Platte aufgebracht werden oder eine Punktlast auf die Platte.
4 1 Andreas Hauffe
5 3 Andreas Hauffe
Aufgrund der vorausgesetzten Symmetrie des Laminats beruhen die Berechnungen im Deformationsmodul von eLamX ausschließlich auf der Biegesteifigkeitsmatrix D des Verbunds.
6 1 Andreas Hauffe
7 2 Andreas Hauffe
h2. Aufbau
8
9
p=. {{thumbnail(deformation.png,size=500, title=Deformationsfenster)}}
10
11 4 Andreas Hauffe
h3. 1 - Eingabegrößen
12 1 Andreas Hauffe
13 4 Andreas Hauffe
Die Eingabe der Modellgrößen erfolgt getrennt für die Platte aus dem definierten Laminat und den zusätzlich aufgebrachten Versteifungselementen.
14 1 Andreas Hauffe
15 4 Andreas Hauffe
Zunächst wird über die Angabe von Länge und Breite aus dem vorgegebenen Laminat eine ebene Rechteckplatte modelliert. Nachfolgend ist die Angabe der gewünschten Randbedingungen nötig. Standardmäßig ist die allseitig gelenkige Lagerung der Platte voreingestellt. Daneben können ber die Betätigung der Dropdownauswahl weitere Randbedingungen ausgewählt werden, welche durch entsprechende Symbole verdeutlicht werden. Diese sind in Abschnitt 5.3 erläutert. Nachfolgend sind die auf die Platte wirkenden Normallasten anzugeben. Es ist eine Kombination von Lasten möglich, welche durch den Lastdialog definiert werden können.
16
17
Als Belastung auf die Platte können in der aktuellen Version von eLamX² Punktlasten und konstante Flächenlasten definiert werden. Die Lastaufbringung erfolgt ausschließlich auf die Platte. Eventuell aufgebrachte Versteifungselemente haben keinen Einfluss auf die Lastdefinition. Die Wirkrichtung der Last entspricht der Orientierung der z-Achse. Eine positive Last wirkt in positive, eine negative Last in negative z-Richtung. An dieser Stelle sei darauf hingewiesen, dass der zu Grunde liegende Berechnungsansatz auf den Annahmen der Kirchhoffschen Plattentheorie beruht. Somit wird von kleinen Durchbiegungen und entsprechenden Lasten ausgegangen. Für die Punktlast ist eine Lastposition entsprechend des Plattenkoordinatensystems anzugeben.
18
19
Dieses hat seinen Ursprung in der Plattenmitte. Die Positionsangabe erfolgt absolut. Fehleingaben, beispielsweise Lastangriffspositionen außerhalb des Plattengebietes, werden zur Zeit noch nicht abgefangen.
20
21
Die Flächenlast wirkt konstant auf das gesamte Plattengebiet. Die anzugebende Kraft entspricht der Kraft pro Flächeneinheit. Zur Berechnung der Verformung der Platte wird wie im Stabilitätsmodul das Ritzverfahren unter Nutzung globaler Ansatzfunktionen genutzt. Mit Erhöhung der anzugebenden Termanzahl für die Ansatzfunktionen erhöht sich die Genauigkeit, jedoch auch die Berechnungsdauer. Zur Gewährleistung einer ausreichenden Rechengenauigkeit sollte die Termanzahl nicht zu gering gewählt werden. Die Anzahl der verwendeten Terme sollte so gewählt werden, dass diese größer ist als der größere Wert des Seitenverhältnis Länge/Breite bzw. Breite/Länge.
22
23 1 Andreas Hauffe
Die Berechnungen erfolgen mit Betrachtung der Biege-Drill-Kopplung innerhalb des Laminats.
24 3 Andreas Hauffe
25 4 Andreas Hauffe
Analog zum Stabilitätsmodul kann die Platte mit Versteifungselementen versehen werden. Das nötige Vorgehen und die auftretenden Größen sind in Abschnitt 5.3 beschrieben.
26 1 Andreas Hauffe
27 4 Andreas Hauffe
h3. 2 - Button Berechnen
28
29 1 Andreas Hauffe
Die Betätigung des Buttons Berechnen startet die Berechnung innerhalb des Deformationsmoduls. Vor der Berechnung wird automatisch die ABD-Matrix des definierten Laminats berechnet und überprüft, ob das Laminat symmetrisch bezüglich der Mittelebene ist. Ist dies nicht der Fall erfolgt eine Warnmeldung.
30
31
Trotz der Warnmeldung kann auch bei unsymmetrischen Laminaten das Deformationsmodul von eLamX aufgerufen werden. Die Kontrolle der Sinnhaftigkeit der Ergebnisse obliegt in diesem Fall dem Nutzer. Nachfolgend dargestellt ist die Benutzeroberfläche des Deformationsmoduls.
32
33 4 Andreas Hauffe
h3. 3 - Ergebnisausgabe
34
35
Als Ergebnis der Berechnungen mit dem Deformationsmodul von eLamX werden standardmäßig die minimale und maximale Durchbiegung der Platte angegeben. Über die dargestellte Auswahlliste
36 1 Andreas Hauffe
werden in zukünftigen eLamX-Versionen weitere Ergebnisse zur Darstellung bereitgestellt.
37
38 4 Andreas Hauffe
Zusätzlich ist die Angabe eines Skalierungsfaktors der Durchbiegung in der grafischen Ausgabe möglich. Standardmäßig beträgt dieser Wert eins. Dies entspricht der Normierung auf den
39 1 Andreas Hauffe
maximal in der Platte auftretenden Wert.
40
41 4 Andreas Hauffe
h3. 4 - grafische Ergebnisausgabe
42 1 Andreas Hauffe
43 4 Andreas Hauffe
Neben der zahlenmäßigen Ausgabe wird das gewählte Ergebnis grafisch dargestellt. Die Darstellung erfolgt dreidimensional entsprechend des dargestellten kartesischen Koordinatensystems.
44
Hierbei bezeichnen x und y die Achsen der Plattenebene. Die z-Achse zeigt in Dickenrichtung des Laminats. Die Versteifungselemente werden grau angezeigt. Die Versteifungen sind in der grafischen Ausgabe so positioniert, wie es der Modellvorstellung entspricht. Ihr Schwerpunkt liegt in der Plattenmittelebene.
45
Die Durchbiegung wird farblich in den Grenzen von rot bis blau dargestellt. Hierbei kennzeichnet die Farbe rot die größte Durchbiegung in positive und blau die größte Duchbiegung in negative z-Richtung. Somit ergeben sich je nach Richtung der aufgebrachten Last unterschiedliche Farbverteilungen.
46 1 Andreas Hauffe
47 4 Andreas Hauffe
Das Modell kann mit Hilfe der gedrückten Maustasten in jede Position verschoben, gedreht und gezoomt werden.
48
49
h3. 5 - Ansichtsoptionen
50
51
Über diese Buttons kann die Ergebnisansicht der Rechteckplatte bearbeitet werden. So ist es mittels der oberen drei Buttons möglich die drei Ebenen des dreidimensionalen kartesischen Koordinatensystems anzuzeigen. Zusätzlich sind eine isometrische Darstellung und eine Anpassung der Darstellung an die vorhandene Fenstergröße möglich.